Blockchain
Bitcoin Metadata
Introduction
The Bitcoin Metadata dataset by Blockchain provides 23 fundamental metadata of Bitcoin directly fetched from the Bitcoin blockchain. The data starts in January 2009 and delivered on a daily frequency. This dataset contains mining statistics like hash rate and miner revenue; transaction metadata like transaction per block, transaction fee, and number of addresses; and blockchain metadata like blockchain size and block size.
For more information about the Bitcoin Metadata dataset, including CLI commands and pricing, see the dataset listing.
About the Provider
Blockchain is a website that publishes data related to Bitcoin. It has been online since 2011 and publishes the Bitcoin Metadata history back to 2009.
Getting Started
The following snippet demonstrates how to request data from the Bitcoin Metadata dataset:
from QuantConnect.DataSource import * self.btcusd = self.add_crypto("BTCUSD", Resolution.DAILY, Market.BITFINEX).symbol self.dataset_symbol = self.add_data(BitcoinMetadata, self.btcusd).symbol
using QuantConnect.DataSource; _symbol = AddCrypto("BTCUSD", Resolution.Daily, Market.Bitfinex).Symbol; _datasetSymbol = AddData<BitcoinMetadata>(_symbol).Symbol;
Requesting Data
To add Bitcoin Metadata data to your algorithm, call the AddData
add_data
method with the BTCUSD Symbol
. Save a reference to the dataset Symbol
so you can access the data later in your algorithm.
class BlockchainBitcoinMetadataAlgorithm(QCAlgorithm): def initialize(self) -> None: self.set_start_date(2019, 1, 1) self.set_end_date(2020, 6, 1) self.set_cash(100000) self.btcusd = self.add_crypto("BTCUSD", Resolution.DAILY, Market.BITFINEX).symbol self.dataset_symbol = self.add_data(BitcoinMetadata, self.btcusd).symbol
public class BlockchainBitcoinMetadataAlgorithm: QCAlgorithm { private Symbol _symbol, _datasetSymbol; public override void Initialize() { SetStartDate(2019, 1, 1); SetEndDate(2020, 6, 1); SetCash(100000); _symbol = AddCrypto("BTCUSD", Resolution.Daily, Market.Bitfinex).Symbol; _datasetSymbol = AddData<BitcoinMetadata>(_symbol).Symbol; } }
Accessing Data
To get the current Bitcoin Metadata data, index the current Slice
with the dataset Symbol
. Slice objects deliver unique events to your algorithm as they happen, but the Slice
may not contain data for your dataset at every time step. To avoid issues, check if the Slice
contains the data you want before you index it.
def on_data(self, slice: Slice) -> None: if slice.contains_key(self.dataset_symbol): data_point = slice[self.dataset_symbol] self.log(f"{self.dataset_symbol} miner revenue at {slice.time}: {data_point.miners_revenue}")
public override void OnData(Slice slice) { if (slice.ContainsKey(_datasetSymbol)) { var dataPoint = slice[_datasetSymbol]; Log($"{_datasetSymbol} miner revenue at {slice.Time}: {dataPoint.MinersRevenue}"); } }
To iterate through all of the dataset objects in the current Slice
, call the Get
get
method.
def on_data(self, slice: Slice) -> None: for dataset_symbol, data_point in slice.get(BlockchainBitcoinData).items(): self.log(f"{dataset_symbol} miner revenue at {slice.time}: {data_point.miners_revenue}")
public override void OnData(Slice slice) { foreach (var kvp in slice.Get<BlockchainBitcoinData>()) { var datasetSymbol = kvp.Key; var dataPoint = kvp.Value; Log($"{datasetSymbol} miner revenue at {slice.Time}: {dataPoint.MinersRevenue}"); } }
Historical Data
To get historical Bitcoin Metadata data, call the History
history
method with the dataset Symbol
. If there is no data in the period you request, the history result is empty.
# DataFrame history_df = self.history(self.dataset_symbol, 100, Resolution.DAILY) # Dataset objects history_bars = self.history[BlockchainBitcoinData](self.dataset_symbol, 100, Resolution.DAILY)
var history = History<BlockchainBitcoinData>(_datasetSymbol, 100, Resolution.Daily);
For more information about historical data, see History Requests.
Example Applications
The Bitcoin Metadata dataset enables you to incorporate metadata from the Bitcoin blockchain into your strategies. Examples include the following strategies:
- Comparing mining and transaction statistics to provide insight on the supply-demand relationship of the Bitcoin blockchain service.
- Measuring the activity and popularity of the Bitcoin blockchain to predict the price movements of the Cryptocurrency.
Classic Algorithm Example
The following example algorithm tracks the transaction-to-hash-rate ratio of the Bitcoin network. The algorithm holds Bitcoin when the ratio increases. Otherwise, it holds dollars.
from AlgorithmImports import * from QuantConnect.DataSource import * class BlockchainBitcoinMetadataAlgorithm(QCAlgorithm): def initialize(self) -> None: self.set_start_date(2019, 1, 1) # Set Start Date self.set_end_date(2020, 12, 31) # Set End Date self.set_cash(100000) # Request BTCUSD as the trading vehicle on Bitcoin Metadata self.btcusd = self.add_crypto("BTCUSD", Resolution.MINUTE).symbol # Request Bitcoin Metadata for trade signal generation self.bitcoin_metadata_symbol = self.add_data(BitcoinMetadata, self.btcusd).symbol # Historical data history = self.history(BitcoinMetadata, self.bitcoin_metadata_symbol, 60, Resolution.DAILY) self.debug(f"We got {len(history)} items from our history request for {self.btcusd} Blockchain Bitcoin Metadata") # Cache the last supply-demand ratio for comparison self.last_demand_supply = None def on_data(self, slice: Slice) -> None: # Trade only based on updated Bitcoin Metadata data = slice.get(BitcoinMetadata) if self.bitcoin_metadata_symbol in data and data[self.bitcoin_metadata_symbol] != None: # Calculate the supply-demand ratio to estimate the microeconomy structure of Bitcoin for scalp-trading # Transaction number as demand, hash production rate as supply current_demand_supply = data[self.bitcoin_metadata_symbol].numberof_transactions / data[self.bitcoin_metadata_symbol].hash_rate # Comparing the average transaction-to-hash-rate ratio changes, buy Bitcoin if demand is higher than supply, sell vice versa if self.last_demand_supply != None and current_demand_supply > self.last_demand_supply: self.set_holdings(self.btcusd, 1) else: self.set_holdings(self.btcusd, 0) self.last_demand_supply = current_demand_supply
public class BlockchainBitcoinMetadataAlgorithm : QCAlgorithm { private Symbol _bitcoinMetadataSymbol; private Symbol _btcSymbol; // Cache the last supply-demand ratio for comparison private decimal? _lastDemandSupply = None; public override void Initialize() { SetStartDate(2019, 1, 1); //Set Start Date SetEndDate(2020, 12, 31); //Set End Date SetCash(100000); // Request BTCUSD as the trading vehicle on Bitcoin Metadata _btcSymbol = AddCrypto("BTCUSD", Resolution.Minute, Market.Bitfinex).Symbol; // Request Bitcoin Metadata for trade signal generation _bitcoinMetadataSymbol = AddData<BitcoinMetadata>(_btcSymbol).Symbol; // Historical data var history = History(new[]{_bitcoinMetadataSymbol}, 60, Resolution.Daily); Debug($"We got {history.Count()} items from our history request for {_btcSymbol} Blockchain Bitcoin Metadata"); } public override void OnData(Slice slice) { // Trade only based on updated Bitcoin Metadata var data = slice.Get<BitcoinMetadata>(); if (!data.IsNullOrEmpty()) { // Calculate the supply-demand ratio to estimate the microeconomy structure of Bitcoin for scalp-trading // Transaction number as demand, hash production rate as supply var currentDemandSupply = data[_bitcoinMetadataSymbol].NumberofTransactions / data[_bitcoinMetadataSymbol].HashRate; // Comparing the average transaction-to-hash-rate ratio changes, buy Bitcoin if demand is higher than supply, sell vice versa if (_lastDemandSupply != None && currentDemandSupply > _lastDemandSupply) { SetHoldings(_btcSymbol, 1); } else { SetHoldings(_btcSymbol, 0); } _lastDemandSupply = currentDemandSupply; } } }
Framework Algorithm Example
The following example algorithm tracks the transaction-to-hash-rate ratio of the Bitcoin network. The algorithm holds Bitcoin when the ratio increases. Otherwise, it holds dollars.
from AlgorithmImports import * from QuantConnect.DataSource import * class BlockchainBitcoinMetadataFrameworkAlgorithm(QCAlgorithm): def initialize(self) -> None: self.set_start_date(2019, 1, 1) # Set Start Date self.set_end_date(2020, 12, 31) # Set End Date self.set_cash(100000) # Universe contains only BTCUSD as the trading vehicle on Bitcoin Metadata self.add_universe_selection( ManualUniverseSelectionModel( Symbol.create("BTCUSD", SecurityType.CRYPTO, Market.BITFINEX) )) # Custom alpha model that emit insights based on Bitcoin Metadata self.add_alpha(BlockchainBitcoinMetadataAlphaModel()) # Equally invest to evenly dissipate the capital concentration risk from non-sysmtematic risky events self.set_portfolio_construction(EqualWeightingPortfolioConstructionModel()) class BlockchainBitcoinMetadataAlphaModel(AlphaModel): def __init__(self) -> None: self.bitcoin_metadata_symbol_by_symbol = {} # Cache the last supply-demand ratio for comparison self.last_demand_supply = {} def update(self, algorithm:QCAlgorithm, slice: Slice) -> List[Insight]: insights = [] # Trade only based on updated Bitcoin Metadata data = slice.Get(BitcoinMetadata) for symbol, bitcoin_metadata_symbol in self.bitcoin_metadata_symbol_by_symbol.items(): if data.contains_key(bitcoin_metadata_symbol) and data[bitcoin_metadata_symbol] != None: # Calculate the supply-demand ratio to estimate the microeconomy structure of the crypto pair for scalp-trading # Transaction number as demand, hash production rate as supply current_demand_supply = data[bitcoin_metadata_symbol].numberof_transactions / data[bitcoin_metadata_symbol].hash_rate # Comparing the average transaction-to-hash-rate ratio changes, buy coin if demand is higher than supply if symbol in self.last_demand_supply and current_demand_supply > self.last_demand_supply[symbol]: insights.append(Insight.price(symbol, timedelta(1), InsightDirection.UP)) self.last_demand_supply[symbol] = current_demand_supply return insights def on_securities_changed(self, algorithm: QCAlgorithm, changes: SecurityChanges) -> None: for security in changes.added_securities: symbol = security.symbol # Request Bitcoin Metadata for trade signal generation bitcoin_metadata_symbol = algorithm.add_data(BitcoinMetadata, symbol).symbol self.bitcoin_metadata_symbol_by_symbol[symbol] = bitcoin_metadata_symbol # Historical data history = algorithm.history(BitcoinMetadata, bitcoin_metadata_symbol, 60, Resolution.DAILY) algorithm.debug(f"We got {len(history)} items from our history request for {symbol} Blockchain Bitcoin Metadata")
public class BlockchainBitcoinMetadataFrameworkAlgorithm : QCAlgorithm { public override void Initialize() { SetStartDate(2019, 1, 1); //Set Start Date SetEndDate(2020, 12, 31); //Set End Date SetCash(100000); // Universe contains only BTCUSD as the trading vehicle on Bitcoin Metadata AddUniverseSelection( new ManualUniverseSelectionModel( QuantConnect.Symbol.Create("BTCUSD", SecurityType.Crypto, Market.Bitfinex) )); // Custom alpha model that emit insights based on Bitcoin Metadata AddAlpha(new BlockchainBitcoinMetadataAlphaModel()); // Equally invest to evenly dissipate the capital concentration risk from non-sysmtematic risky events SetPortfolioConstruction(new EqualWeightingPortfolioConstructionModel()); } } public class BlockchainBitcoinMetadataAlphaModel: AlphaModel { private Dictionary<Symbol, Symbol> _bitcoinMetadataSymbolBySymbol = new Dictionary<Symbol, Symbol>(); // Cache the last supply-demand ratio for comparison private Dictionary<Symbol, decimal> _lastDemandSupply = new Dictionary<Symbol, decimal>(); public BlockchainBitcoinMetadataAlphaModel(){} public override IEnumerable<Insight> Update(QCAlgorithm algorithm, Slice slice) { var insights = new List<Insight>(); // Trade only based on updated Bitcoin Metadata var data = slice.Get<BitcoinMetadata>(); if (!data.IsNullOrEmpty()) { foreach(var kvp in _bitcoinMetadataSymbolBySymbol) { var symbol = kvp.Key; var bitcoinMetadataSymbol = kvp.Value; // Calculate the supply-demand ratio to estimate the microeconomy structure of the crypto pair for scalp-trading // Transaction number as demand, hash production rate as supply var currentDemandSupply = data[bitcoinMetadataSymbol].NumberofTransactions / data[bitcoinMetadataSymbol].HashRate; // Comparing the average transaction-to-hash-rate ratio changes, buy coin if demand is higher than supply if (_lastDemandSupply.ContainsKey(symbol) && currentDemandSupply > _lastDemandSupply[symbol]) { insights.Add(Insight.Price(symbol, TimeSpan.FromDays(1), InsightDirection.Up)); } _lastDemandSupply[symbol] = currentDemandSupply; } } return insights; } public override void OnSecuritiesChanged(QCAlgorithm algorithm, SecurityChanges changes) { foreach (var security in changes.AddedSecurities) { var symbol = security.Symbol; // Request Bitcoin Metadata for trade signal generation var bitcoinMetadataSymbol = algorithm.AddData<BitcoinMetadata>(symbol).Symbol; _bitcoinMetadataSymbolBySymbol.Add(symbol, bitcoinMetadataSymbol); // Historical data var history = algorithm.History(new[]{bitcoinMetadataSymbol}, 60, Resolution.Daily); algorithm.Debug($"We got {history.Count()} items from our history request for {symbol} Blockchain Bitcoin Metadata"); } } }