book
Checkout our new book! Hands on AI Trading with Python, QuantConnect, and AWS Learn More arrow

Blockchain

Bitcoin Metadata

Introduction

The Bitcoin Metadata dataset by Blockchain provides 23 fundamental metadata of Bitcoin directly fetched from the Bitcoin blockchain. The data starts in January 2009 and delivered on a daily frequency. This dataset contains mining statistics like hash rate and miner revenue; transaction metadata like transaction per block, transaction fee, and number of addresses; and blockchain metadata like blockchain size and block size.

For more information about the Bitcoin Metadata dataset, including CLI commands and pricing, see the dataset listing.

About the Provider

Blockchain is a website that publishes data related to Bitcoin. It has been online since 2011 and publishes the Bitcoin Metadata history back to 2009.

Getting Started

The following snippet demonstrates how to request data from the Bitcoin Metadata dataset:

from QuantConnect.DataSource import *

self.btcusd = self.add_crypto("BTCUSD", Resolution.DAILY, Market.BITFINEX).symbol
self.dataset_symbol = self.add_data(BitcoinMetadata, self.btcusd).symbol
using QuantConnect.DataSource;

_symbol = AddCrypto("BTCUSD", Resolution.Daily, Market.Bitfinex).Symbol;
_datasetSymbol = AddData<BitcoinMetadata>(_symbol).Symbol; 

Data Summary

The following table describes the dataset properties:

PropertyValue
Start DateJanuary 2009
CoverageBitcoin blockchain
Data DensityRegular
ResolutionDaily
TimezoneUTC

Requesting Data

To add Bitcoin Metadata data to your algorithm, call the AddDataadd_data method with the BTCUSD Symbol. Save a reference to the dataset Symbol so you can access the data later in your algorithm.

class BlockchainBitcoinMetadataAlgorithm(QCAlgorithm):

    def initialize(self) -> None:
        self.set_start_date(2019, 1, 1)
        self.set_end_date(2020, 6, 1)
        self.set_cash(100000)

        self.btcusd = self.add_crypto("BTCUSD", Resolution.DAILY, Market.BITFINEX).symbol
        self.dataset_symbol = self.add_data(BitcoinMetadata, self.btcusd).symbol 
public class BlockchainBitcoinMetadataAlgorithm: QCAlgorithm
{
    private Symbol _symbol, _datasetSymbol;

    public override void Initialize()
    {
        SetStartDate(2019, 1, 1);
        SetEndDate(2020, 6, 1);
        SetCash(100000);

        _symbol = AddCrypto("BTCUSD", Resolution.Daily, Market.Bitfinex).Symbol;
        _datasetSymbol = AddData<BitcoinMetadata>(_symbol).Symbol;
    }
}

Accessing Data

To get the current Bitcoin Metadata data, index the current Slice with the dataset Symbol. Slice objects deliver unique events to your algorithm as they happen, but the Slice may not contain data for your dataset at every time step. To avoid issues, check if the Slice contains the data you want before you index it.

def on_data(self, slice: Slice) -> None:
    if slice.contains_key(self.dataset_symbol):
        data_point = slice[self.dataset_symbol]
        self.log(f"{self.dataset_symbol} miner revenue at {slice.time}: {data_point.miners_revenue}")
public override void OnData(Slice slice)
{
    if (slice.ContainsKey(_datasetSymbol))
    {
        var dataPoint = slice[_datasetSymbol];
        Log($"{_datasetSymbol} miner revenue at {slice.Time}: {dataPoint.MinersRevenue}");
    }
}

To iterate through all of the dataset objects in the current Slice, call the Getget method.

def on_data(self, slice: Slice) -> None:
    for dataset_symbol, data_point in slice.get(BlockchainBitcoinData).items():
        self.log(f"{dataset_symbol} miner revenue at {slice.time}: {data_point.miners_revenue}")
public override void OnData(Slice slice)
{
    foreach (var kvp in slice.Get<BlockchainBitcoinData>())
    {
        var datasetSymbol = kvp.Key;
        var dataPoint = kvp.Value;
        Log($"{datasetSymbol} miner revenue at {slice.Time}: {dataPoint.MinersRevenue}");
    }
}

Historical Data

To get historical Bitcoin Metadata data, call the Historyhistory method with the dataset Symbol. If there is no data in the period you request, the history result is empty.

# DataFrame
history_df = self.history(self.dataset_symbol, 100, Resolution.DAILY)

# Dataset objects
history_bars = self.history[BlockchainBitcoinData](self.dataset_symbol, 100, Resolution.DAILY)
var history = History<BlockchainBitcoinData>(_datasetSymbol, 100, Resolution.Daily);

For more information about historical data, see History Requests.

Remove Subscriptions

To remove a subscription, call the RemoveSecurityremove_security method.

self.remove_security(self.dataset_symbol)
RemoveSecurity(_datasetSymbol);

Example Applications

The Bitcoin Metadata dataset enables you to incorporate metadata from the Bitcoin blockchain into your strategies. Examples include the following strategies:

  • Comparing mining and transaction statistics to provide insight on the supply-demand relationship of the Bitcoin blockchain service.
  • Measuring the activity and popularity of the Bitcoin blockchain to predict the price movements of the Cryptocurrency.

Classic Algorithm Example

The following example algorithm tracks the transaction-to-hash-rate ratio of the Bitcoin network. The algorithm holds Bitcoin when the ratio increases. Otherwise, it holds dollars.

from AlgorithmImports import *
from QuantConnect.DataSource import *

class BlockchainBitcoinMetadataAlgorithm(QCAlgorithm):
    
    def initialize(self) -> None:
        self.set_start_date(2019, 1, 1)   # Set Start Date
        self.set_end_date(2020, 12, 31)    # Set End Date
        self.set_cash(100000)

        # Request BTCUSD as the trading vehicle on Bitcoin Metadata
        self.btcusd = self.add_crypto("BTCUSD", Resolution.MINUTE).symbol
        # Request Bitcoin Metadata for trade signal generation
        self.bitcoin_metadata_symbol = self.add_data(BitcoinMetadata, self.btcusd).symbol

        # Historical data
        history = self.history(BitcoinMetadata, self.bitcoin_metadata_symbol, 60, Resolution.DAILY)
        self.debug(f"We got {len(history)} items from our history request for {self.btcusd} Blockchain Bitcoin Metadata")

        # Cache the last supply-demand ratio for comparison
        self.last_demand_supply = None

    def on_data(self, slice: Slice) -> None:
        # Trade only based on updated Bitcoin Metadata
        data = slice.get(BitcoinMetadata)
        
        if self.bitcoin_metadata_symbol in data and data[self.bitcoin_metadata_symbol] != None:
            # Calculate the supply-demand ratio to estimate the microeconomy structure of Bitcoin for scalp-trading
            # Transaction number as demand, hash production rate as supply
            current_demand_supply = data[self.bitcoin_metadata_symbol].numberof_transactions / data[self.bitcoin_metadata_symbol].hash_rate

            # Comparing the average transaction-to-hash-rate ratio changes, buy Bitcoin if demand is higher than supply, sell vice versa
            if self.last_demand_supply != None and current_demand_supply > self.last_demand_supply:
                self.set_holdings(self.btcusd, 1)
            else:
                self.set_holdings(self.btcusd, 0)

            self.last_demand_supply = current_demand_supply
public class BlockchainBitcoinMetadataAlgorithm : QCAlgorithm
{
    private Symbol _bitcoinMetadataSymbol;
    private Symbol _btcSymbol;
    // Cache the last supply-demand ratio for comparison
    private decimal? _lastDemandSupply = None;

    public override void Initialize()
    {
        SetStartDate(2019, 1, 1);  //Set Start Date
        SetEndDate(2020, 12, 31);    //Set End Date
        SetCash(100000);

        // Request BTCUSD as the trading vehicle on Bitcoin Metadata
        _btcSymbol = AddCrypto("BTCUSD", Resolution.Minute, Market.Bitfinex).Symbol; 
        // Request Bitcoin Metadata for trade signal generation
        _bitcoinMetadataSymbol = AddData<BitcoinMetadata>(_btcSymbol).Symbol;

        // Historical data
        var history = History(new[]{_bitcoinMetadataSymbol}, 60, Resolution.Daily);
        Debug($"We got {history.Count()} items from our history request for {_btcSymbol} Blockchain Bitcoin Metadata");
    }

    public override void OnData(Slice slice)
    {
        // Trade only based on updated Bitcoin Metadata
        var data = slice.Get<BitcoinMetadata>();
        if (!data.IsNullOrEmpty())
        {
            // Calculate the supply-demand ratio to estimate the microeconomy structure of Bitcoin for scalp-trading
            // Transaction number as demand, hash production rate as supply
            var currentDemandSupply = data[_bitcoinMetadataSymbol].NumberofTransactions / data[_bitcoinMetadataSymbol].HashRate;

            // Comparing the average transaction-to-hash-rate ratio changes, buy Bitcoin if demand is higher than supply, sell vice versa
            if (_lastDemandSupply != None && currentDemandSupply > _lastDemandSupply)
            {
                SetHoldings(_btcSymbol, 1);
            }
            else
            {
                SetHoldings(_btcSymbol, 0);
            }

            _lastDemandSupply = currentDemandSupply;
        }
    }
}

Framework Algorithm Example

The following example algorithm tracks the transaction-to-hash-rate ratio of the Bitcoin network. The algorithm holds Bitcoin when the ratio increases. Otherwise, it holds dollars.

from AlgorithmImports import *
from QuantConnect.DataSource import *

class BlockchainBitcoinMetadataFrameworkAlgorithm(QCAlgorithm):
    
    def initialize(self) -> None:
        self.set_start_date(2019, 1, 1)   # Set Start Date
        self.set_end_date(2020, 12, 31)    # Set End Date
        self.set_cash(100000)

        # Universe contains only BTCUSD as the trading vehicle on Bitcoin Metadata
        self.add_universe_selection(
            ManualUniverseSelectionModel(
            Symbol.create("BTCUSD", SecurityType.CRYPTO, Market.BITFINEX)
        ))
        # Custom alpha model that emit insights based on Bitcoin Metadata
        self.add_alpha(BlockchainBitcoinMetadataAlphaModel())
        # Equally invest to evenly dissipate the capital concentration risk from non-sysmtematic risky events
        self.set_portfolio_construction(EqualWeightingPortfolioConstructionModel())
        
class BlockchainBitcoinMetadataAlphaModel(AlphaModel):
    
    def __init__(self) -> None:
        self.bitcoin_metadata_symbol_by_symbol = {}
        # Cache the last supply-demand ratio for comparison
        self.last_demand_supply = {}

    def update(self, algorithm:QCAlgorithm, slice: Slice) -> List[Insight]:
        insights = []
        
        # Trade only based on updated Bitcoin Metadata
        data = slice.Get(BitcoinMetadata)
        
        for symbol, bitcoin_metadata_symbol in self.bitcoin_metadata_symbol_by_symbol.items():
            if data.contains_key(bitcoin_metadata_symbol) and data[bitcoin_metadata_symbol] != None: 
                # Calculate the supply-demand ratio to estimate the microeconomy structure of the crypto pair for scalp-trading
                # Transaction number as demand, hash production rate as supply
                current_demand_supply = data[bitcoin_metadata_symbol].numberof_transactions / data[bitcoin_metadata_symbol].hash_rate

                # Comparing the average transaction-to-hash-rate ratio changes, buy coin if demand is higher than supply
                if symbol in self.last_demand_supply and current_demand_supply > self.last_demand_supply[symbol]:
                    insights.append(Insight.price(symbol, timedelta(1), InsightDirection.UP))

                self.last_demand_supply[symbol] = current_demand_supply
                
        return insights

    def on_securities_changed(self, algorithm: QCAlgorithm, changes: SecurityChanges) -> None:
        for security in changes.added_securities:
            symbol = security.symbol
            
            # Request Bitcoin Metadata for trade signal generation
            bitcoin_metadata_symbol = algorithm.add_data(BitcoinMetadata, symbol).symbol

            self.bitcoin_metadata_symbol_by_symbol[symbol] = bitcoin_metadata_symbol

            # Historical data
            history = algorithm.history(BitcoinMetadata, bitcoin_metadata_symbol, 60, Resolution.DAILY)
            algorithm.debug(f"We got {len(history)} items from our history request for {symbol} Blockchain Bitcoin Metadata")
public class BlockchainBitcoinMetadataFrameworkAlgorithm : QCAlgorithm
{
    public override void Initialize()
    {
        SetStartDate(2019, 1, 1);  //Set Start Date
        SetEndDate(2020, 12, 31);    //Set End Date
        SetCash(100000);

        // Universe contains only BTCUSD as the trading vehicle on Bitcoin Metadata
        AddUniverseSelection(
            new ManualUniverseSelectionModel(
            QuantConnect.Symbol.Create("BTCUSD", SecurityType.Crypto, Market.Bitfinex)
        ));
        // Custom alpha model that emit insights based on Bitcoin Metadata
        AddAlpha(new BlockchainBitcoinMetadataAlphaModel());
        // Equally invest to evenly dissipate the capital concentration risk from non-sysmtematic risky events
        SetPortfolioConstruction(new EqualWeightingPortfolioConstructionModel());
    }
}

public class BlockchainBitcoinMetadataAlphaModel: AlphaModel
{
    private Dictionary<Symbol, Symbol> _bitcoinMetadataSymbolBySymbol = new Dictionary<Symbol, Symbol>();
    // Cache the last supply-demand ratio for comparison
    private Dictionary<Symbol, decimal> _lastDemandSupply = new Dictionary<Symbol, decimal>();

    public BlockchainBitcoinMetadataAlphaModel(){}

    public override IEnumerable<Insight> Update(QCAlgorithm algorithm, Slice slice)
    {
        var insights = new List<Insight>();
        
        // Trade only based on updated Bitcoin Metadata
        var data = slice.Get<BitcoinMetadata>();
        if (!data.IsNullOrEmpty())
        {
            foreach(var kvp in _bitcoinMetadataSymbolBySymbol)
            {
                var symbol = kvp.Key;
                var bitcoinMetadataSymbol = kvp.Value;

                // Calculate the supply-demand ratio to estimate the microeconomy structure of the crypto pair for scalp-trading
                // Transaction number as demand, hash production rate as supply
                var currentDemandSupply = data[bitcoinMetadataSymbol].NumberofTransactions / data[bitcoinMetadataSymbol].HashRate;

                // Comparing the average transaction-to-hash-rate ratio changes, buy coin if demand is higher than supply
                if (_lastDemandSupply.ContainsKey(symbol) && currentDemandSupply > _lastDemandSupply[symbol])
                {
                    insights.Add(Insight.Price(symbol, TimeSpan.FromDays(1), InsightDirection.Up));
                }

                _lastDemandSupply[symbol] = currentDemandSupply;
            }
        }
        
        return insights;
    }

    public override void OnSecuritiesChanged(QCAlgorithm algorithm, SecurityChanges changes)
    {
        foreach (var security in changes.AddedSecurities)
        {
            var symbol = security.Symbol;
            // Request Bitcoin Metadata for trade signal generation
            var bitcoinMetadataSymbol = algorithm.AddData<BitcoinMetadata>(symbol).Symbol;

            _bitcoinMetadataSymbolBySymbol.Add(symbol, bitcoinMetadataSymbol);

            // Historical data
            var history = algorithm.History(new[]{bitcoinMetadataSymbol}, 60, Resolution.Daily);
            algorithm.Debug($"We got {history.Count()} items from our history request for {symbol} Blockchain Bitcoin Metadata");
        }
    }
}

Data Point Attributes

The Bitcoin Metadata dataset provides BitcoinMetadata objects, which have the following attributes:

You can also see our Videos. You can also get in touch with us via Discord.

Did you find this page helpful?

Contribute to the documentation: