Brain
Brain ML Stock Ranking
Introduction
The Brain ML Stock Ranking dataset by Brain generates a daily ranking for US Equities based on their predicted ranking of future returns relative to the universe median across four-time horizons: next 2, 3, 5, 10, and 21 days (one trading month). The data covers 1,000 US Equities (universe updated yearly by including the largest 1,000 US companies of the previous year), starts in January 2010, and is delivered on a daily frequency. This dataset is created by a voting scheme of machine learning classifiers that non-linearly combine a variety of features with a series of techniques aimed at mitigating the well-known overfitting problem for financial data with a low signal-to-noise ratio. Examples of features are time-varying stock-specific features like price and volume-related metrics or fundamentals; time-fixed stock-specific features like the sector and other database information; market regime features such as volatility and other financial stress indicators; calendar features representing possible anomalies, for example, the month of the year.
More precisely the ML Stock Ranking score is related to the confidence of a Machine Learning classifier in predicting top or bottom quintile returns for the next N trading days (e.g. next 21 trading days) for a stock with the respect to the median of the universe and ranges from -1 to +1.
A negative score means that the system is more confident that the stock belongs to the lower returns quintile, a positive score means that the system is more confident that the stock belongs to the higher returns quintile. It is important to note that the score has a meaning only if used to compare different stocks to perform a ranking.
Typical use is to download the score for a large stock universe for a given day, e.g. 500 stocks or the full universe of 1000 stocks, order the stocks by mlAlpha score and go long the top K stocks, or build a long-short strategy going long the top K and short the bottom K stocks.
For more information, refer to Brain's summary paper.
This dataset depends on the US Equity Security Master dataset because the US Equity Security Master dataset contains information on splits, dividends, and symbol changes.
For more information about the Brain ML Stock Ranking dataset, including CLI commands and pricing, see the dataset listing.
About the Provider
Brain is a Research Company that creates proprietary datasets and algorithms for investment strategies, combining experience in financial markets with strong competencies in Statistics, Machine Learning, and Natural Language Processing. The founders share a common academic background of research in Physics as well as extensive experience in Financial markets.
Getting Started
The following snippet demonstrates how to request data from the Brain ML Stock Ranking dataset:
self.aapl = self.add_equity("AAPL", Resolution.DAILY).symbol self.dataset_symbol = self.add_data(BrainStockRanking2Day, self.aapl).symbol self._universe = self.add_universe(BrainStockRankingUniverse, self.universe_selection)
_symbol = AddEquity("AAPL", Resolution.Daily).Symbol; _datasetSymbol = AddData<BrainStockRanking2Day>(_symbol).Symbol; _universe = AddUniverse<BrainStockRankingUniverse>(UniverseSelection);
Requesting Data
To add Brain ML Stock Ranking data to your algorithm, call the AddData
add_data
method. Save a reference to the dataset Symbol
so you can access the data later in your algorithm.
class BrainMLRankingDataAlgorithm(QCAlgorithm): def initialize(self) -> None: self.set_start_date(2021, 1, 1) self.set_end_date(2021, 7, 8) self.set_cash(100000) self.aapl = self.add_equity("AAPL", Resolution.DAILY).symbol self.two_day_symbol = self.add_data(BrainStockRanking2Day, self.aapl).symbol self.three_day_symbol = self.add_data(BrainStockRanking3Day, self.aapl).symbol self.five_day_symbol = self.add_data(BrainStockRanking5Day, self.aapl).symbol self.ten_day_symbol = self.add_data(BrainStockRanking10Day, self.aapl).symbol self.month_symbol = self.add_data(BrainStockRanking21Day, self.aapl).symbol
public class BrainMLRankingDataAlgorithm : QCAlgorithm { private Symbol _symbol, _2DaySymbol, _3DaySymbol, _5DaySymbol, _10DaySymbol, _monthSymbol; public override void Initialize() { SetStartDate(2021, 1, 1); SetEndDate(2021, 7, 8); SetCash(100000); _symbol = AddEquity("AAPL", Resolution.Daily).Symbol; _2DaySymbol = AddData<BrainStockRanking2Day>(_symbol).Symbol; _3DaySymbol = AddData<BrainStockRanking3Day>(_symbol).Symbol; _5DaySymbol = AddData<BrainStockRanking5Day>(_symbol).Symbol; _10DaySymbol = AddData<BrainStockRanking10Day>(_symbol).Symbol; _monthSymbol = AddData<BrainStockRanking21Day>(_symbol).Symbol; } }
Accessing Data
To get the current Brain ML Stock Ranking data, index the current Slice
with the dataset Symbol
. Slice objects deliver unique events to your algorithm as they happen, but the Slice
may not contain data for your dataset at every time step. To avoid issues, check if the Slice
contains the data you want before you index it.
def on_data(self, slice: Slice) -> None: if slice.contains_key(self.two_day_symbol): data_point = slice[self.two_day_symbol] self.log(f"{self.two_day_symbol} rank at {slice.time}: {data_point.rank}") if slice.contains_key(self.three_day_symbol): data_point = slice[self.three_day_symbol] self.log(f"{self.three_day_symbol} rank at {slice.time}: {data_point.rank}") if slice.contains_key(self.five_day_symbol): data_point = slice[self.five_day_symbol] self.log(f"{self.five_day_symbol} rank at {slice.time}: {data_point.rank}") if slice.contains_key(self.ten_day_symbol): data_point = slice[self.ten_day_symbol] self.log(f"{self.ten_day_symbol} rank at {slice.time}: {data_point.rank}") if slice.contains_key(self.month_symbol): data_point = slice[self.month_symbol] self.log(f"{self.month_symbol} rank at {slice.time}: {data_point.rank}")
public override void OnData(Slice slice) { if (slice.ContainsKey(_2DaySymbol)) { var dataPoint = slice[_2DaySymbol]; Log($"{_2DaySymbol} rank at {slice.Time}: {dataPoint.Rank}"); } if (slice.ContainsKey(_3DaySymbol)) { var dataPoint = slice[_3DaySymbol]; Log($"{_3DaySymbol} rank at {slice.Time}: {dataPoint.Rank}"); } if (slice.ContainsKey(_5DaySymbol)) { var dataPoint = slice[_5DaySymbol]; Log($"{_5DaySymbol} rank at {slice.Time}: {dataPoint.Rank}"); } if (slice.ContainsKey(_10DaySymbol)) { var dataPoint = slice[_10DaySymbol]; Log($"{_10DaySymbol} rank at {slice.Time}: {dataPoint.Rank}"); } if (slice.ContainsKey(_monthSymbol)) { var dataPoint = slice[_monthSymbol]; Log($"{_monthSymbol} rank at {slice.Time}: {dataPoint.Rank}"); } }
To iterate through all of the dataset objects in the current Slice
, call the Get
get
method.
def on_data(self, slice: Slice) -> None: for dataset_symbol, data_point in slice.get(BrainStockRanking2Day).items(): self.log(f"{dataset_symbol} rank at {slice.time}: {data_point.rank}") for dataset_symbol, data_point in slice.get(BrainStockRanking3Day).items(): self.log(f"{dataset_symbol} rank at {slice.time}: {data_point.rank}") for dataset_symbol, data_point in slice.get(BrainStockRanking5Day).items(): self.log(f"{dataset_symbol} rank at {slice.time}: {data_point.rank}") for dataset_symbol, data_point in slice.get(BrainStockRanking10Day).items(): self.log(f"{dataset_symbol} rank at {slice.time}: {data_point.rank}") for dataset_symbol, data_point in slice.get(BrainStockRanking21Day).items(): self.log(f"{dataset_symbol} rank at {slice.time}: {data_point.rank}")
public override void OnData(Slice slice) { foreach (var kvp in slice.Get<BrainStockRanking2Day>()) { var datasetSymbol = kvp.Key; var dataPoint = kvp.Value; Log($"{datasetSymbol} rank at {slice.Time}: {dataPoint.Rank}"); } foreach (var kvp in slice.Get<BrainStockRanking3Day>()) { var datasetSymbol = kvp.Key; var dataPoint = kvp.Value; Log($"{datasetSymbol} rank at {slice.Time}: {dataPoint.Rank}"); } foreach (var kvp in slice.Get<BrainStockRanking5Day>()) { var datasetSymbol = kvp.Key; var dataPoint = kvp.Value; Log($"{datasetSymbol} rank at {slice.Time}: {dataPoint.Rank}"); } foreach (var kvp in slice.Get<BrainStockRanking10Day>()) { var datasetSymbol = kvp.Key; var dataPoint = kvp.Value; Log($"{datasetSymbol} rank at {slice.Time}: {dataPoint.Rank}"); } foreach (var kvp in slice.Get<BrainStockRanking21Day>()) { var datasetSymbol = kvp.Key; var dataPoint = kvp.Value; Log($"{datasetSymbol} rank at {slice.Time}: {dataPoint.Rank}"); } }
Historical Data
To get historical Brain ML Stock Ranking data, call the History
history
method with the dataset Symbol
. If there is no data in the period you request, the history result is empty.
# DataFrames two_day_history_df = self.history(self.two_day_symbol, 100, Resolution.DAILY) three_day_history_df = self.history(self.three_day_symbol, 100, Resolution.DAILY) five_day_history_df = self.history(self.five_day_symbol, 100, Resolution.DAILY) ten_day_history_df = self.history(self.ten_day_symbol, 100, Resolution.DAILY) thirty_day_history_df = self.history(self.month_symbol, 100, Resolution.DAILY) history_df = self.history([self.two_day_symbol, self.three_day_symbol, self.five_day_symbol, self.ten_day_symbol, self.month_symbol], 100, Resolution.DAILY) # Dataset objects two_day_history_bars = self.history[BrainStockRanking2Day](self.two_day_symbol, 100, Resolution.DAILY) three_day_history_bars = self.history[BrainStockRanking3Day](self.three_day_symbol, 100, Resolution.DAILY) five_day_history_bars = self.history[BrainStockRanking5Day](self.five_day_symbol, 100, Resolution.DAILY) ten_day_history_bars = self.history[BrainStockRanking10Day](self.ten_day_symbol, 100, Resolution.DAILY) month_history_bars = self.history[BrainStockRanking21Day](self.month_symbol, 100, Resolution.DAILY)
// Dataset objects var twoDayHistory = History<BrainStockRanking2Day>(_2DaySymbol, 100, Resolution.Daily); var threeDayHistory = History<BrainStockRanking3Day>(_3DaySymbol, 100, Resolution.Daily); var fiveDayHistory = History<BrainStockRanking5Day>(_5DaySymbol, 100, Resolution.Daily); var tenDayHistory = History<BrainStockRanking10Day>(_10DaySymbol, 100, Resolution.Daily); var monthHistory = History<BrainStockRanking21Day>(_monthSymbol, 100, Resolution.Daily); // Slice objects var history = History(new[] {_2DaySymbol, _3DaySymbol, _5DaySymbol, _10DaySymbol, _monthSymbol}, 100, Resolution.Daily);
For more information about historical data, see History Requests.
Universe Selection
To select a dynamic universe of US Equities based on Brain ML Stock Ranking data, call the AddUniverse
add_universe
method with the BrainStockRankingUniverse
class and a selection function.
def initialize(self) -> None: self._universe = self.add_universe(BrainStockRankingUniverse, self.universe_selection) def universe_selection(self, alt_coarse: List[BrainStockRankingUniverse]) -> List[Symbol]: return [d.symbol for d in alt_coarse \ if d.rank2_days > 0 \ and d.rank3_days > 0 \ and d.rank5_days > 0]
private Universe _universe; public override void Initialize() { _universe = AddUniverse<BrainStockRankingUniverse>(altCoarse => { return from d in altCoarse.OfType<BrainStockRankingUniverse>() where d.Rank2Days > 0m && d.Rank3Days > 0m && d.Rank5Days > 0m select d.Symbol; }) };
For more information about dynamic universes, see Universes.
Universe History
You can get historical universe data in an algorithm and in the Research Environment.
Historical Universe Data in Algorithms
To get historical universe data in an algorithm, call the History
history
method with the Universe
object and the lookback period. If there is no data in the period you request, the history result is empty.
var universeHistory = History(_universe, 30, Resolution.Daily); foreach (var ranks in universeHistory) { foreach (BrainStockRankingUniverse rank in ranks) { Log($"{rank.Symbol} 2-day rank at {rank.EndTime}: {rank.Rank2Days}"); } }
# DataFrame example where the columns are the BrainStockRankingUniverse attributes: history_df = self.history(self._universe, 30, Resolution.DAILY, flatten=True) # Series example where the values are lists of BrainStockRankingUniverse objects: universe_history = self.history(self._universe, 30, Resolution.DAILY) for (_, time), ranks in universe_history.items(): for rank in ranks: self.log(f"{rank.symbol} 2-day rank at {rank.end_time}: {rank.rank2_days}")
Historical Universe Data in Research
To get historical universe data in research, call the UniverseHistory
universe_history
method with the Universe
object, a start date, and an end date. This method returns the filtered universe. If there is no data in the period you request, the history result is empty.
var universeHistory = qb.UniverseHistory(universe, qb.Time.AddDays(-30), qb.Time); foreach (var ranks in universeHistory) { foreach (BrainStockRankingUniverse rank in ranks) { Console.WriteLine($"{rank.Symbol} 2-day rank at {rank.EndTime}: {rank.Rank2Days}"); } }
# DataFrame example where the columns are the BrainStockRankingUniverse attributes: history_df = qb.universe_history(universe, qb.time-timedelta(30), qb.time, flatten=True) # Series example where the values are lists of BrainStockRankingUniverse objects: universe_history = qb.universe_history(universe, qb.time-timedelta(30), qb.time) for (_, time), ranks in universe_history.items(): for rank in ranks: print(f"{rank.symbol} 2-day rank at {rank.end_time}: {rank.rank2_days}")
You can call the History
history
method in Research.
Remove Subscriptions
To remove a subscription, call the RemoveSecurity
remove_security
method.
self.remove_security(self.two_day_symbol) self.remove_security(self.three_day_symbol) self.remove_security(self.five_day_symbol) self.remove_security(self.ten_day_symbol) self.remove_security(self.month_symbol)
RemoveSecurity(_2DaySymbol); RemoveSecurity(_3DaySymbol); RemoveSecurity(_5DaySymbol); RemoveSecurity(_10DaySymbol); RemoveSecurity(_monthSymbol);
If you subscribe to Brain ML Stock Ranking data for assets in a dynamic universe, remove the dataset subscription when the asset leaves your universe. To view a common design pattern, see Track Security Changes.
Example Applications
The Brain ML Stock Ranking dataset enables you to test strategies using the machine learning ranking provided by Brain. Examples include the following strategies:
- Constructing a portfolio of securities with each security's weight in the portfolio reflecting its Brain ML Stock Ranking
- Buying stocks with the largest Brain ML Stock Ranking
- Building a market-neutral strategy based on the top N and bottom N stocks in the Brain ML Stock Ranking
Classic Algorithm Example
The following example algorithm constructs a portfolio where the weight of each security in the portfolio is scaled based on its Brain ML Ranking. It gives a larger allocation to securities that have a higher Brain ML Ranking.
from AlgorithmImports import * from QuantConnect.DataSource import * class BrainMLRankingDataAlgorithm(QCAlgorithm): def initialize(self) -> None: self.set_start_date(2021, 1, 1) self.set_end_date(2021, 7, 8) self.set_cash(100000) # We cherry picked 5 largest stocks, high trading volume provides better information and credibility for ML ranking tickers = ["AAPL", "TSLA", "MSFT", "F", "KO"] self.symbol_by_dataset_symbol = {} for ticker in tickers: # Requesting data to get 2 days estimated relative ranking symbol = self.add_equity(ticker, Resolution.DAILY).symbol dataset_symbol = self.add_data(BrainStockRanking2Day, symbol).symbol self.symbol_by_dataset_symbol[dataset_symbol] = symbol # Historical data history = self.history(dataset_symbol, 365, Resolution.DAILY) self.debug(f"We got {len(history)} items from our history request for {symbol}") def on_data(self, slice: Slice) -> None: # Collect rankings for all selected symbols for ranking them points = slice.Get(BrainStockRanking2Day) if points is None: return symbols = [] ranks = [] for point in points.Values: symbols.append(self.symbol_by_dataset_symbol[point.symbol]) ranks.append(point.rank) # Rank each symbol's Brain ML ranking relative to each other for positional sizing if len(ranks) == 0: return ranks = [sorted(ranks).index(rank) + 1 for rank in ranks] # Place orders according to the ML ranking, the better the rank, the higher the estimated return and hence weight for i, rank in enumerate(ranks): weight = rank / sum(ranks) self.set_holdings(symbols[i], weight)
public class BrainMLRankingDataAlgorithm : QCAlgorithm { private Dictionary<Symbol, Symbol> _symbolByDatasetSymbol = new Dictionary<Symbol, Symbol>(); public override void Initialize() { SetStartDate(2021, 1, 1); SetEndDate(2021, 7, 8); SetCash(100000); // We cherry picked 5 largest stocks, high trading volume provides better information and credibility for ML ranking var tickers = new List<string>() {"AAPL", "TSLA", "MSFT", "F", "KO"}; foreach (var ticker in tickers) { // Requesting data to get 2 days estimated relative ranking var symbol = AddEquity(ticker, Resolution.Daily).Symbol; var datasetSymbol = AddData<BrainStockRanking2Day>(symbol).Symbol; _symbolByDatasetSymbol.Add(datasetSymbol, symbol); // Historical data var history = History<BrainStockRanking2Day>(datasetSymbol, 365, Resolution.Daily); Debug($"We got {history.Count()} items from our history request for {symbol}"); } } public override void OnData(Slice slice) { // Collect rankings for all symbols for ranking them var points = slice.Get<BrainStockRanking2Day>(); if (points == None) { return; } var symbols = new List<Symbol>(); var ranks = new List<decimal>(); foreach (var point in points.Values) { symbols.Add(_symbolByDatasetSymbol[point.Symbol]); ranks.Add(point.Rank); } // Rank each symbol's Brain ML ranking relative to the other symbols for positional sizing if (ranks.Count() == 0) return; var sortedRanksTemp = new List<decimal>(ranks); sortedRanksTemp.Sort(); var sortedRanks = new List<decimal>(); for (var i = 0; i < symbols.Count(); i++) { sortedRanks.Add(sortedRanksTemp.IndexOf(ranks[i]) + 1); } // Place orders, the better the rank, the higher the estimated return and hence weight for (var i = 0; i < symbols.Count(); i++) { var rank = sortedRanks[i]; var weight = rank / sortedRanks.Sum(); SetHoldings(symbols[i], weight); } } }
Framework Algorithm Example
The following example algorithm constructs a portfolio where the weight of each security in the portfolio is scaled based on its Brain ML Ranking. It gives a larger allocation to securities that have a higher Brain ML Ranking.
from AlgorithmImports import * from QuantConnect.DataSource import * class BrainMLRankingDataAlgorithm(QCAlgorithm): def initialize(self) -> None: self.set_start_date(2021, 1, 1) self.set_end_date(2021, 7, 8) self.set_cash(100000) self.universe_settings.resolution = Resolution.DAILY # Select based on ML ranking data self.add_universe(BrainStockRankingUniverse, self.universe_selection) self.add_alpha(BrainMLRankingAlphaModel()) self.set_portfolio_construction(InsightWeightingPortfolioConstructionModel()) self.add_risk_management(NullRiskManagementModel()) self.set_execution(ImmediateExecutionModel()) def universe_selection(self, alt_coarse: List[BrainStockRankingUniverse]) -> List[Symbol]: # Select the ones that expected to out-perform the median of the whole market in 2-3 days return [d.symbol for d in alt_coarse \ if d.Rank2Days > 0.2 \ and d.Rank3Days > 0.2] class BrainMLRankingAlphaModel(AlphaModel): symbol_data_by_symbol = {} symbol_by_dataset_symbol = {} def update(self, algorithm: QCAlgorithm, slice: Slice) -> List[Insight]: insights = [] # Collect rankings for all selected symbols for ranking them points = slice.Get(BrainStockRanking2Day) if points is None: return [] symbols = [] ranks = [] for point in points.Values: symbols.append(self.symbol_by_dataset_symbol[point.symbol]) ranks.append(point.rank) # Rank each symbol's Brain ML ranking relative to each other for positional sizing if len(ranks) == 0: return [] ranks = [sorted(ranks).index(rank) + 1 for rank in ranks] # Place orders according to the ML ranking, the better the rank, the higher the estimated return and hence weight for i, rank in enumerate(ranks): weight = rank / sum(ranks) insights.append(Insight.price(symbols[i], timedelta(days=7), InsightDirection.UP, None, None, None, weight)) return insights def on_securities_changed(self, algorithm: QCAlgorithm, changes: SecurityChanges) -> None: for security in changes.added_securities: symbol = security.symbol symbol_data = SymbolData(algorithm, symbol) self.symbol_data_by_symbol[symbol] = symbol_data self.symbol_by_dataset_symbol[symbol_data.dataset_symbol] = symbol for security in changes.removed_securities: symbol_data = self.symbol_data_by_symbol.pop(security.symbol, None) if symbol_data: symbol_data.dispose() for dataset_symbol, symbol in self.symbol_by_dataset_symbol.items(): if symbol == security.symbol: self.symbol_by_dataset_symbol.pop(dataset_symbol) break class SymbolData: def __init__(self, algorithm, symbol): self.algorithm = algorithm # Requesting data to get 2 days estimated relative ranking self.dataset_symbol = algorithm.add_data(BrainStockRanking2Day, symbol).symbol # Historical data history = algorithm.history(self.dataset_symbol, 365, Resolution.DAILY) algorithm.debug(f"We got {len(history)} items from our history request for {symbol}") def dispose(self): # Unsubscribe from the Brain ML Ranking feed for this security to release computation resources self.algorithm.remove_security(self.dataset_symbol)
public class BrainMLRankingDataAlgorithm : QCAlgorithm { public override void Initialize() { SetStartDate(2021, 1, 1); SetEndDate(2021, 7, 8); SetCash(100000); // Select based on ML ranking data AddUniverse<BrainStockRankingUniverse>(altCoarse => { // Select the ones that expected to out-perform the median of the whole market in 2-3 days return from d in altCoarse.OfType<BrainStockRankingUniverse>() where d.Rank2Days > 0.2m && d.Rank3Days > 0.2m select d.Symbol; }); AddAlpha(new BrainMLRankingAlphaModel()); SetPortfolioConstruction(new InsightWeightingPortfolioConstructionModel()); AddRiskManagement(new NullRiskManagementModel()); SetExecution(new ImmediateExecutionModel()); } } public class BrainMLRankingAlphaModel : AlphaModel { private Dictionary<Symbol, SymbolData> _symbolDataBySymbol = new Dictionary<Symbol, SymbolData>(); private Dictionary<Symbol, Symbol> _symbolByDatasetSymbol = new Dictionary<Symbol, Symbol>(); public override IEnumerable<Insight> Update(QCAlgorithm algorithm, Slice slice) { var insights = new List<Insight>(); // Collect rankings for all selected symbols for ranking them var points = slice.Get<BrainStockRanking2Day>(); if (points == None) { return insights; } var symbols = new List<Symbol>(); var ranks = new List<decimal>(); foreach (var point in points.Values) { symbols.Add(_symbolByDatasetSymbol[point.Symbol]); ranks.Add(point.Rank); } // Rank each symbol's Brain ML ranking relative to the other symbols for positional sizing if (ranks.Count() == 0) { return insights; } var sortedRanksTemp = new List<decimal>(ranks); sortedRanksTemp.Sort(); var sortedRanks = new List<decimal>(); for (var i = 0; i < symbols.Count(); i++) { sortedRanks.Add(sortedRanksTemp.IndexOf(ranks[i]) + 1); } // Place orders according to the ML ranking, the better the rank, the higher the estimated return and hence weight for (var i = 0; i < symbols.Count(); i++) { var rank = sortedRanks[i]; var weight = rank / sortedRanks.Sum(); insights.Add(Insight.Price(symbols[i], TimeSpan.FromDays(7), InsightDirection.Up, None, None, None, (double)weight)); } return insights; } public override void OnSecuritiesChanged(QCAlgorithm algorithm, SecurityChanges changes) { foreach (var security in changes.AddedSecurities) { var symbol = security.Symbol; var symbolData = new SymbolData(algorithm, symbol); _symbolDataBySymbol.Add(symbol, symbolData); _symbolByDatasetSymbol.Add(symbolData.datasetSymbol, symbol); } foreach (var security in changes.RemovedSecurities) { var symbol = security.Symbol; if (_symbolDataBySymbol.ContainsKey(symbol)) { _symbolDataBySymbol[symbol].dispose(); _symbolDataBySymbol.Remove(symbol); } foreach (var entry in _symbolByDatasetSymbol) { if (entry.Value == symbol) { _symbolByDatasetSymbol.Remove(entry.Key); } } } } } public class SymbolData { private QCAlgorithm _algorithm; public Symbol datasetSymbol; public SymbolData(QCAlgorithm algorithm, Symbol symbol) { _algorithm = algorithm; // Requesting data to get 2 days estimated relative ranking datasetSymbol = algorithm.AddData<BrainStockRanking2Day>(symbol).Symbol; // Historical data var history = algorithm.History<BrainStockRanking2Day>(datasetSymbol, 365, Resolution.Daily); algorithm.Debug($"We got {history.Count()} items from our history request for {symbol}"); } public void dispose() { // Unsubscribe from the Brain ML Ranking feed for this security to release computation resources _algorithm.RemoveSecurity(datasetSymbol); } }
Research Example
The following example lists US Equities having the highest 2-day rank.
#r "../QuantConnect.DataSource.BrainSentiment.dll" using QuantConnect.DataSource; var qb = new QuantBook(); // Requesting data var aapl = qb.AddEquity("AAPL", Resolution.Daily).Symbol; var symbol = qb.AddData<BrainStockRanking2Day>(aapl).Symbol; // Historical data var history = qb.History<BrainStockRanking2Day>(symbol, 30, Resolution.Daily); foreach (BrainStockRanking2Day rank in history) { Console.WriteLine($"{rank} at {rank.EndTime}"); } // Add Universe Selection IEnumerable<Symbol> UniverseSelection(IEnumerable<BaseData> altCoarse) { return (from d in altCoarse.OfType<BrainStockRankingUniverse>() orderby d.Rank2Days descending select d.Symbol).Take(10); } var universe = qb.AddUniverse<BrainStockRankingUniverse>(UniverseSelection); // Historical Universe data var universeHistory = qb.UniverseHistory(universe, qb.Time.AddDays(-5), qb.Time); foreach (var ranks in universeHistory) { foreach (BrainStockRankingUniverse rank in ranks) { Console.WriteLine($"{rank.Symbol} 2-day rank at {rank.EndTime}: {rank.Rank2Days}"); } }
qb = QuantBook() # Requesting Data aapl = qb.add_equity("AAPL", Resolution.DAILY).symbol symbol = qb.add_data(BrainStockRanking2Day, aapl).symbol # Historical data history = qb.history(BrainStockRanking2Day, symbol, 30, Resolution.DAILY) for (symbol, time), row in history.iterrows(): print(f"{symbol} rank at {time}: {row['rank']}") # Add Universe Selection def universe_selection(alt_coarse: List[BrainStockRankingUniverse]) -> List[Symbol]: return [d.symbol for d in sorted(alt_coarse, key=lambda x: x.Rank2Days, reverse=True)[:10]] universe = qb.add_universe(BrainStockRankingUniverse, universe_selection) # Historical Universe data universe_history = qb.universe_history(universe, qb.time-timedelta(5), qb.time) for (_, time), ranks in universe_history.items(): for rank in ranks: print(f"{rank.symbol} 2-day rank at {rank.end_time}: {rank.Rank2Days}")
Data Point Attributes
The Brain ML Stock Ranking dataset provides BrainStockRankingBase
and BrainStockRankingUniverse
objects.
BrainStockRankingBase Attributes
BrainStockRankingBase
objects have the following attributes:
BrainStockRankingUniverse Attributes
BrainStockRankingUniverse
objects have the following attributes: