ExtractAlpha
True Beats
Introduction
The True Beats dataset by ExtractAlpha provides quantitative predictions of EPS and Revenues for US Equities. The data covers a dynamic universe of around 4,000-5,000 US-listed Equities on a daily average. The data starts in January 2000 and is delivered on a daily frequency. This dataset is created by incorporating the opinions of expert analysts, historical earnings, revenue trends for the company and its peers, and metrics on company earnings management.
This dataset depends on the US Equity Security Master dataset because the US Equity Security Master dataset contains information on splits, dividends, and symbol changes.
For more information about the True Beats dataset, including CLI commands and pricing, see the dataset listing.
About the Provider
ExtractAlpha was founded by Vinesh Jha in 2013 with the goal of providing alternative data for investors. ExtractAlpha's rigorously researched data sets and quantitative stock selection models leverage unique sources and analytical techniques, allowing users to gain an investment edge.
Getting Started
The following snippet demonstrates how to request data from the True Beats dataset:
from QuantConnect.DataSource import * self.aapl = self.add_equity("AAPL", Resolution.DAILY).symbol self.dataset_symbol = self.add_data(ExtractAlphaTrueBeats, self.aapl).symbol
using QuantConnect.DataSource; _symbol = AddEquity("AAPL", Resolution.Daily).Symbol; _datasetSymbol = AddData<ExtractAlphaTrueBeats>(_symbol).Symbol;
Requesting Data
To add True Beats data to your algorithm, call the AddData
add_data
method. Save a reference to the dataset Symbol
so you can access the data later in your algorithm.
class ExtractAlphaTrueBeatsDataAlgorithm(QCAlgorithm): def initialize(self) -> None: self.set_start_date(2019, 1, 1) self.set_end_date(2020, 6, 1) self.set_cash(100000) self.aapl = self.add_equity("AAPL", Resolution.DAILY).symbol self.dataset_symbol = self.add_data(ExtractAlphaTrueBeats, self.aapl).symbol
public class ExtractAlphaTrueBeatsDataAlgorithm: QCAlgorithm { private Symbol _symbol, _datasetSymbol; public override void Initialize() { SetStartDate(2019, 1, 1); SetEndDate(2020, 6, 1); SetCash(100000); _symbol = AddEquity("AAPL", Resolution.Daily).Symbol; _datasetSymbol = AddData<ExtractAlphaTrueBeats>(_symbol).Symbol; } }
Accessing Data
To get the current True Beats data, index the current Slice
with the dataset Symbol
. Slice objects deliver unique events to your algorithm as they happen, but the Slice
may not contain data for your dataset at every time step. To avoid issues, check if the Slice
contains the data you want before you index it.
def on_data(self, slice: Slice) -> None: if slice.contains_key(self.dataset_symbol): data_point = slice[self.dataset_symbol] self.log(f"{self.dataset_symbol} True beat at {slice.time}: {data_point.True_beat}")
public override void OnData(Slice slice) { if (slice.ContainsKey(_datasetSymbol)) { var dataPoint = slice[_datasetSymbol]; Log($"{_datasetSymbol} True beat at {slice.Time}: {dataPoint.TrueBeat}"); } }
To iterate through all of the dataset objects in the current Slice
, call the Get
get
method.
def on_data(self, slice: Slice) -> None: for dataset_symbol, data_point in slice.get(ExtractAlphaTrueBeats).items(): self.log(f"{dataset_symbol} True beat at {slice.time}: {data_point.True_beat}")
public override void OnData(Slice slice) { foreach (var kvp in slice.Get<ExtractAlphaTrueBeats>()) { var datasetSymbol = kvp.Key; var dataPoint = kvp.Value; Log($"{datasetSymbol} True beat at {slice.Time}: {dataPoint.TrueBeat}"); } }
Historical Data
To get historical True Beats data, call the History
history
method with the dataset Symbol
. If there is no data in the period you request, the history result is empty.
# DataFrame history_df = self.history(self.dataset_symbol, 100, Resolution.DAILY, flatten=True) # Series history_series = self.history(self.dataset_symbol, 100, Resolution.DAILY) # Dataset objects history_bars = self.history[ExtractAlphaTrueBeats](self.dataset_symbol, 100, Resolution.DAILY)
var history = History<ExtractAlphaTrueBeats>(_datasetSymbol, 100, Resolution.Daily);
For more information about historical data, see History Requests.
Remove Subscriptions
To remove a subscription, call the RemoveSecurity
remove_security
method.
self.remove_security(self.dataset_symbol)
RemoveSecurity(_datasetSymbol);
If you subscribe to True Beats data for assets in a dynamic universe, remove the dataset subscription when the asset leaves your universe. To view a common design pattern, see Track Security Changes.
Example Applications
The True Beats dataset enables you to predict EPS and revenue of US-listed Equities for trading. Examples include the following strategies:
- Finding surprise in EPS or revenue for sentiment/arbitrage trading
- Stock or sector selections based on EPS or revenue predictions
- Calculate expected return by valuation models based on EPS or revenue predictions (e.g. Black-Litterman)
Classic Algorithm Example
The following example algorithm creates a dynamic universe of the 100 most liquid US Equities. Each day, it then forms an equal-weighted dollar-neutral portfolio of the 10 best and 10 worst surprising companies on their financials.
from AlgorithmImports import * from QuantConnect.DataSource import * class ExtractAlphaTrueBeatsDataAlgorithm(QCAlgorithm): def initialize(self) -> None: self.set_start_date(2019, 1, 1) self.set_end_date(2020, 1, 1) self.set_cash(100000) # A variable to control the time of rebalancing self.last_time = datetime.min self.add_universe(self.my_coarse_filter_function) self.universe_settings.resolution = Resolution.MINUTE def my_coarse_filter_function(self, coarse: List[CoarseFundamental]) -> List[Symbol]: # Select the stocks with highest dollar volume due to better informed information from more market activities # Only the ones with fundamental data are supported by True beats data sorted_by_dollar_volume = sorted([x for x in coarse if x.has_fundamental_data], key=lambda x: x.dollar_volume, reverse=True) selected = [x.symbol for x in sorted_by_dollar_volume[:100]] return selected def on_data(self, slice: Slice) -> None: if self.time > self.time: return # Trade only based on the updated True beats data points = slice.Get(ExtractAlphaTrueBeats) if not points: return # Extract the True beats data (earning and revenue estimates) as trading signals True_beats = {point.Key: TrueBeat for point in points for TrueBeat in point.Value} # Long the ones with the highest earning and revenue estimates due to fundamental factor may bring stock price up # Short the lowest that predicted to bring stock price down sorted_by_True_beat = sorted(True_beats.items(), key=lambda x: x[1].True_beat) long_symbols = [x[0].underlying for x in sorted_by_True_beat[-10:]] short_symbols = [x[0].underlying for x in sorted_by_True_beat[:10]] # Liquidate the ones without a strong earning and revenue that support stock price direction for symbol in self.portfolio.Keys: if self.portfolio[symbol].invested \ and symbol not in long_symbols \ and symbol not in short_symbols: self.liquidate(symbol) # Invest equally and dollar-neutral to evenly dissipate capital risk and hedge systematic risk long_targets = [PortfolioTarget(symbol, 0.05) for symbol in long_symbols] short_targets = [PortfolioTarget(symbol, -0.05) for symbol in short_symbols] self.set_holdings(long_targets + short_targets) self.last_time = Expiry.END_OF_DAY(self.time) def on_securities_changed(self, changes: SecurityChanges) -> None: for security in changes.added_securities: # Requesting True beats data for trading signal generation extract_alpha_True_beats_symbol = self.add_data(ExtractAlphaTrueBeats, security.symbol).symbol # Historical Data history = self.history(extract_alpha_True_beats_symbol, 10, Resolution.DAILY) self.log(f"We got {len(history)} items from our history request for {security.symbol} ExtractAlpha True Beats data")
public class ExtractAlphaTrueBeatsDataAlgorithm : QCAlgorithm { // A variable to control the time of rebalancing private DateTime _time = DateTime.MinValue; public override void Initialize() { SetStartDate(2021, 1, 1); SetEndDate(2021, 7, 1); SetCash(100000); AddUniverse(MyCoarseFilterFunction); UniverseSettings.Resolution = Resolution.Minute; } private IEnumerable<Symbol> MyCoarseFilterFunction(IEnumerable<CoarseFundamental> coarse) { // Select the stocks with highest dollar volume due to better informed information from more market activities // Only the ones with fundamental data are supported by True beats data return (from c in coarse where c.HasFundamentalData orderby c.DollarVolume descending select c.Symbol).Take(100); } public override void OnData(Slice slice) { if (_time > Time) return; // Trade only based on the updated True beats data var points = slice.Get<ExtractAlphaTrueBeats>(); if (points.IsNullOrEmpty()) return; // Extract the True beats data (earning and revenue estimates) as trading signals List<ExtractAlphaTrueBeat> TrueBeats = new List<ExtractAlphaTrueBeat>( points.SelectMany(point => point.Value.Select(x => (ExtractAlphaTrueBeat)x)) ); // Long the ones with the highest earning and revenue estimates due to fundamental factor may bring stock price up // Short the lowest that predicted to bring stock price down var sortedByTrueBeat = from TrueBeat in TrueBeats where (TrueBeat.TrueBeat != None) orderby TrueBeat.TrueBeat descending select TrueBeat.Symbol.Underlying; var longSymbols = sortedByTrueBeat.Take(10).ToList(); var shortSymbols = sortedByTrueBeat.TakeLast(10).ToList(); // Liquidate the ones without a strong earning and revenue that support stock price direction foreach (var kvp in Portfolio) { var symbol = kvp.Key; if (kvp.Value.Invested && !longSymbols.Contains(symbol) && !shortSymbols.Contains(symbol)) { Liquidate(symbol); } } // Invest equally and dollar-neutral to evenly dissipate capital risk and hedge systematic risk var targets = new List<PortfolioTarget>(); targets.AddRange(longSymbols.Select(symbol => new PortfolioTarget(symbol, 0.05m))); targets.AddRange(shortSymbols.Select(symbol => new PortfolioTarget(symbol, -0.05m))); SetHoldings(targets); _time = Expiry.EndOfDay(Time); } public override void OnSecuritiesChanged(SecurityChanges changes) { foreach(var security in changes.AddedSecurities) { // Requesting True beats data for trading signal generation var extractAlphaTrueBeatsSymbol = AddData<ExtractAlphaTrueBeats>(security.Symbol).Symbol; // Historical Data var history = History(new[]{extractAlphaTrueBeatsSymbol}, 10, Resolution.Daily); Log($"We got {history.Count()} items from our history request for {security.Symbol} ExtractAlpha True Beats data"); } } }
Framework Algorithm Example
The following example algorithm creates a dynamic universe of the 100 most liquid US Equities. Each day, it then forms an equal-weighted dollar-neutral portfolio of the 10 best and 10 worst surprising companies on their financials.
from AlgorithmImports import * from QuantConnect.DataSource import * class ExtractAlphaTrueBeatsDataAlgorithm(QCAlgorithm): def initialize(self) -> None: self.set_start_date(2019, 1, 1) self.set_end_date(2020, 1, 1) self.set_cash(100000) self.add_universe(self.my_coarse_filter_function) self.universe_settings.resolution = Resolution.MINUTE # Custom alpha model to trade based on True beats data signals self.add_alpha(ExtractAlphaTrueBeatsAlphaModel()) # Invest equally and dollar-neutral to evenly dissipate capital risk and hedge systematic risk self.set_portfolio_construction(EqualWeightingPortfolioConstructionModel()) self.set_execution(ImmediateExecutionModel()) def my_coarse_filter_function(self, coarse: List[CoarseFundamental]) -> List[Symbol]: # Select the stocks with highest dollar volume due to better informed information from more market activities # Only the ones with fundamental data are supported by True beats data sorted_by_dollar_volume = sorted([x for x in coarse if x.has_fundamental_data], key=lambda x: x.dollar_volume, reverse=True) selected = [x.symbol for x in sorted_by_dollar_volume[:100]] return selected class ExtractAlphaTrueBeatsAlphaModel(AlphaModel): def __init__(self) -> None: # A variable to control the time of rebalancing self.last_time = datetime.min def update(self, algorithm: QCAlgorithm, slice: Slice) -> List[Insight]: if self.last_time > algorithm.time: return [] # Trade only based on the updated True beats data points = slice.Get(ExtractAlphaTrueBeats) if not points: return [] # Extract the True beats data (earning and revenue estimates) as trading signals True_beats = {point.Key: TrueBeat for point in points for TrueBeat in point.Value} # Long the ones with the highest earning and revenue estimates due to fundamental factor may bring stock price up # Short the lowest that predicted to bring stock price down sorted_by_True_beat = sorted(True_beats.items(), key=lambda x: x[1].True_beat) long_symbols = [x[0].underlying for x in sorted_by_True_beat[-10:]] short_symbols = [x[0].underlying for x in sorted_by_True_beat[:10]] insights = [] for symbol in long_symbols: insights.append(Insight.price(symbol, Expiry.END_OF_DAY, InsightDirection.UP)) for symbol in short_symbols: insights.append(Insight.price(symbol, Expiry.END_OF_DAY, InsightDirection.DOWN)) self.last_time = Expiry.END_OF_DAY(algorithm.time) return insights def on_securities_changed(self, algorithm: QCAlgorithm, changes: SecurityChanges) -> None: for security in changes.added_securities: # Requesting True beats data for trading signal generation extract_alpha_True_beats_symbol = algorithm.add_data(ExtractAlphaTrueBeats, security.symbol).symbol # Historical Data history = algorithm.history(extract_alpha_True_beats_symbol, 10, Resolution.DAILY) algorithm.log(f"We got {len(history)} items from our history request for {security.symbol} ExtractAlpha True Beats data")
public class ExtractAlphaTrueBeatsFrameworkAlgorithm : QCAlgorithm { public override void Initialize() { SetStartDate(2021, 1, 1); SetEndDate(2021, 7, 1); SetCash(100000); AddUniverse(MyCoarseFilterFunction); UniverseSettings.Resolution = Resolution.Minute; // Custom alpha model to trade based on True beats data signals AddAlpha(new ExtractAlphaTrueBeatsAlphaModel()); // Invest equally and dollar-neutral to evenly dissipate capital risk and hedge systematic risk SetPortfolioConstruction(new EqualWeightingPortfolioConstructionModel()); SetExecution(new ImmediateExecutionModel()); } private IEnumerable<Symbol> MyCoarseFilterFunction(IEnumerable<CoarseFundamental> coarse) { // Select the stocks with highest dollar volume due to better informed information from more market activities // Only the ones with fundamental data are supported by True beats data return (from c in coarse where c.HasFundamentalData orderby c.DollarVolume descending select c.Symbol).Take(100); } } public class ExtractAlphaTrueBeatsAlphaModel: AlphaModel { // A variable to control the time of rebalancing private DateTime _time; public ExtractAlphaTrueBeatsAlphaModel() { _time = DateTime.MinValue; } public override IEnumerable<Insight> Update(QCAlgorithm algorithm, Slice slice) { if (_time > algorithm.Time) return new List<Insight>(); // Trade only based on the updated True beats data var points = slice.Get<ExtractAlphaTrueBeats>(); if (points.IsNullOrEmpty()) return new List<Insight>(); // Extract the True beats data (earning and revenue estimates) as trading signals List<ExtractAlphaTrueBeat> TrueBeats = new List<ExtractAlphaTrueBeat>( points.SelectMany(point => point.Value.Select(x => (ExtractAlphaTrueBeat)x)) ); // Long the ones with the highest earning and revenue estimates due to fundamental factor may bring stock price up // Short the lowest that predicted to bring stock price down var sortedByTrueBeat = from s in TrueBeats where (s.TrueBeat != None) orderby s.TrueBeat descending select s.Symbol.Underlying; var longSymbols = sortedByTrueBeat.Take(10).ToList(); var shortSymbols = sortedByTrueBeat.TakeLast(10).ToList(); var insights = new List<Insight>(); insights.AddRange(longSymbols.Select(symbol => new Insight(symbol, Expiry.EndOfDay, InsightType.Price, InsightDirection.Up))); insights.AddRange(shortSymbols.Select(symbol => new Insight(symbol, Expiry.EndOfDay, InsightType.Price, InsightDirection.Down))); _time = Expiry.EndOfDay(algorithm.Time); return insights; } public override void OnSecuritiesChanged(QCAlgorithm algorithm, SecurityChanges changes) { foreach(var security in changes.AddedSecurities) { // Requesting True beats data for trading signal generation var extractAlphaTrueBeatsSymbol = algorithm.AddData<ExtractAlphaTrueBeats>(security.Symbol).Symbol; // Historical Data var history = algorithm.History(new[]{extractAlphaTrueBeatsSymbol}, 10, Resolution.Daily); algorithm.Debug($"We got {history.Count()} items from our history request"); } } }