QuantConnect
CFD Data
Introduction
The CFD Data by QuantConnect serves 51 contracts for differences (CFD). The data starts as early as May 2002 and is delivered on any frequency from tick to daily. This dataset is created by QuantConnect processing raw tick data from OANDA.
CFD data does not include ask and bid sizes.
For more information about the CFD Data dataset, including CLI commands and pricing, see the dataset listing.
About the Provider
QuantConnect was founded in 2012 to serve quants everywhere with the best possible algorithmic trading technology. Seeking to disrupt a notoriously closed-source industry, QuantConnect takes a radically open-source approach to algorithmic trading. Through the QuantConnect web platform, more than 50,000 quants are served every month.
Data Summary
The following table describes the dataset properties:
Property | Value |
---|---|
Start Date | Mixed, earliest starts May 2002 |
Asset Coverage | 51 Contracts |
Data Density | Dense |
Resolution | Tick, Second, Minute, Hour, & Daily |
Timezone | Mixed, in which the contract is listed* |
Market Hours | Always Open, except from Friday 5 PM EST to Sunday 5 PM EST. Index CFDs depends on the underlying market hour* |
* E.g.: DE30EUR tracks DAX30 Index, which is listed in Europe/Berlin timezone.
Requesting Data
To add CFD data to your algorithm, call the AddCfd
add_cfd
method. Save a reference to the CFD Symbol
so you can access the data later in your algorithm.
class CfdAlgorithm (QCAlgorithm): def initialize(self) -> None: self.set_account_currency('EUR'); self.set_start_date(2019, 2, 20) self.set_end_date(2019, 2, 21) self.set_cash('EUR', 100000) self.de30eur = self.add_cfd('DE30EUR').symbol self.set_benchmark(self.de30eur)
public class CfdAlgorithm : QCAlgorithm { private Symbol _symbol; public override void Initialize() { SetAccountCurrency("EUR"); SetStartDate(2019, 2, 20); SetEndDate(2019, 2, 21); SetCash("EUR", 100000); _symbol = AddCfd("DE30EUR").Symbol; SetBenchmark(_symbol); } }
For more information about creating CFD subscriptions, see Requesting Data.
Accessing Data
To get the current CFD data, index the QuoteBars
quote_bars
, or Ticks
ticks
properties of the current Slice
with the CFD Symbol
. Slice objects deliver unique events to your algorithm as they happen, but the Slice
may not contain data for your security at every time step. To avoid issues, check if the Slice
contains the data you want before you index it.
def on_data(self, slice: Slice) -> None: if self.de30eur in slice.quote_bars: quote_bar = slice.quote_bars[self.de30eur] self.log(f"{self.de30eur} bid at {slice.time}: {quote_bar.bid.close}") if self.de30eur in slice.ticks: ticks = slice.ticks[self.de30eur] for tick in ticks: self.log(f"{self.de30eur} price at {slice.time}: {tick.price}")
public override void OnData(Slice slice) { if (slice.QuoteBars.ContainsKey(_symbol)) { var quoteBar = slice.QuoteBars[_symbol]; Log($"{_symbol} bid at {slice.Time}: {quoteBar.Bid.Close}"); } if (slice.Ticks.ContainsKey(_symbol)) { var ticks = slice.Ticks[_symbol]; foreach (var tick in ticks) { Log($"{_symbol} price at {slice.Time}: {tick.Price}"); } } }
You can also iterate through all of the data objects in the current Slice
.
def on_data(self, slice: Slice) -> None: for symbol, quote_bar in slice.quote_bars.items(): self.log(f"{symbol} bid at {slice.time}: {quote_bar.bid.close}") for symbol, ticks in slice.ticks.items(): for tick in ticks: self.log(f"{symbol} price at {slice.time}: {tick.price}")
public override void OnData(Slice slice) { foreach (var kvp in slice.QuoteBars) { var symbol = kvp.Key; var quoteBar = kvp.Value; Log($"{symbol} bid at {slice.Time}: {quoteBar.Bid.Close}"); } foreach (var kvp in slice.Ticks) { var symbol = kvp.Key; var ticks = kvp.Value; foreach (var tick in ticks) { Log($"{symbol} price at {slice.Time}: {tick.Price}"); } } }
For more information about accessing CFD data, see Handling Data.
Historical Data
To get historical CFD data, call the History
history
method with the CFD Symbol
. If there is no data in the period you request, the history result is empty.
# DataFrame history_df = self.history(self.de30eur, 100, Resolution.MINUTE) # QuoteBar objects history_quote_bars = self.history[QuoteBar](self.de30eur, 100, Resolution.MINUTE) # Tick objects history_ticks = self.history[Tick](self.de30eur, timedelta(seconds=10), Resolution.TICK)
// QuoteBar objects var historyQuoteBars = History<QuoteBar>(_symbol, 100, Resolution.Minute); // Tick objects var historyTicks = History<Tick>(_symbol, TimeSpan.FromSeconds(10), Resolution.Tick);
For more information about historical data, see History Requests.
Example Applications
The CFD price data enables you to trade CFD assets in your algorithm. Examples include the following strategies:
- Exploring the daily worldwide news cycles with CFDs that track international indices.
- Trading price movements of commodities with no delivery of physical goods. For example, pairs trading between gold and silver, corn and wheat, brent and crude oil, etc.
Classic Algorithm Example
The following example algorithm implements a pairs trading strategy using Gold and Silver CFDs, XAUUSD and XAGUSD, respectively. When the spread is higher than one standard deviation above its mean, the algorithm buys the spread (buy XAUUSD and sell XAGUSD). When the spread is lower than one standard deviation below its mean, it sells the spread (buy XAGUSD and sell XAUUSD).
from AlgorithmImports import * from QuantConnect.DataSource import * class SMAPairsTrading(QCAlgorithm): def initialize(self) -> None: self.set_start_date(2018, 7, 1) self.set_end_date(2019, 3, 31) self.set_cash(100000) # Request gold and sliver spot CFDs for trading their spread difference, assuming their spread series is cointegrated self.add_cfd('XAUUSD', Resolution.HOUR) self.add_cfd('XAGUSD', Resolution.HOUR) # Use 500-step mean and SD indicator on determine the spread relative difference for trading signal generation self.pair = [ ] self.spread_mean = SimpleMovingAverage(500) self.spread_std = StandardDeviation(500) def on_data(self, slice: Slice) -> None: # Update the indicator with updated spread difference, such that the an updated cointegration threshold is calculated for trade inception spread = self.pair[1].price - self.pair[0].price self.spread_mean.update(self.time, spread) self.spread_std.update(self.time, spread) spread_mean = self.spread_mean.current.value upperthreshold = spread_mean + self.spread_std.current.value lowerthreshold = spread_mean - self.spread_std.current.value # If the spread is higher than upper threshold, bet their spread series will revert to mean if spread > upperthreshold: self.set_holdings(self.pair[0].symbol, 1) self.set_holdings(self.pair[1].symbol, -1) elif spread < lowerthreshold: self.set_holdings(self.pair[0].symbol, -1) self.set_holdings(self.pair[1].symbol, 1) # Close positions if mean reverted elif (self.portfolio[self.pair[0].symbol].quantity > 0 and spread < spread_mean)\ or (self.portfolio[self.pair[0].symbol].quantity < 0 and spread > spread_mean): self.liquidate() def on_securities_changed(self, changes: SecurityChanges) -> None: self.pair = [x for x in changes.added_securities] #1. Call for 500 bars of history data for each symbol in the pair and save to the variable history history = self.history([x.symbol for x in self.pair], 500) #2. Unstack the Pandas data frame to reduce it to the history close price history = history.close.unstack(level=0) #3. Iterate through the history tuple and update the mean and standard deviation with historical data for tuple in history.itertuples(): self.spread_mean.update(tuple[0], tuple[2]-tuple[1]) self.spread_std.update(tuple[0], tuple[2]-tuple[1])
public class GoldSilverPairsTradingAlgorithm : QCAlgorithm { // Use 500-step mean and SD indicator on determine the spread relative difference for trading signal generation private SimpleMovingAverage _spreadMean = new SimpleMovingAverage(500); private StandardDeviation _spreadStd = new StandardDeviation(500); private Security[] _pair = new Security[2]; public override void Initialize() { SetStartDate(2018, 7, 1); SetEndDate(2019, 3, 31); SetCash(100000); // Request gold and sliver spot CFDs for trading their spread difference, assuming their spread series is cointegrated AddCfd("XAUUSD", Resolution.Hour); AddCfd("XAGUSD", Resolution.Hour); } public override void OnData(Slice slice) { // Update the indicator with updated spread difference, such that the an updated cointegration threshold is calculated for trade inception var spread = _pair[1].Price - _pair[0].Price; _spreadMean.Update(Time, spread); _spreadStd.Update(Time, spread); var upperthreshold = _spreadMean + _spreadStd; var lowerthreshold = _spreadMean - _spreadStd; // If the spread is higher than upper threshold, bet their spread series will revert to mean if (spread > upperthreshold) { SetHoldings(_pair[0].Symbol, 1); SetHoldings(_pair[1].Symbol, -1); } else if (spread < lowerthreshold) { SetHoldings(_pair[0].Symbol, -1); SetHoldings(_pair[1].Symbol, 1); } // Close positions if mean reverted else if ((Portfolio[_pair[0].Symbol].Quantity > 0m && spread < _spreadMean) || (Portfolio[_pair[0].Symbol].Quantity < 0m && spread > _spreadMean)) { Liquidate(); } } public override void OnSecuritiesChanged(SecurityChanges changes) { _pair = changes.AddedSecurities.ToArray(); //1. Call for 500 days of history data for each symbol in the pair and save to the variable history var history = History(_pair.Select(x => x.Symbol), 500); //2. Iterate through the history tuple and update the mean and standard deviation with historical data foreach(var slice in history) { var spread = slice[_pair[1].Symbol].Close - slice[_pair[0].Symbol].Close; _spreadMean.Update(slice.Time, spread); _spreadStd.Update(slice.Time, spread); } } }
Framework Algorithm Example
The following example algorithm implements a pairs trading strategy using Gold and Silver CFDs, XAUUSD and XAGUSD, respectively. When the spread is higher than one standard deviation above its mean, the algorithm buys the spread (buy XAUUSD and sell XAGUSD). When the spread is lower than one standard deviation below its mean, it sells the spread (buy XAGUSD and sell XAUUSD).
from AlgorithmImports import * from QuantConnect.DataSource import * class GoldSilverPairsTradingAlgorithm (QCAlgorithm): def initialize(self) -> None: self.set_start_date(2018, 7, 1) self.set_end_date(2019, 3, 31) self.set_cash(100000) self.universe_settings.resolution = Resolution.HOUR # Custom universe contains only gold and sliver spot CFDs for trading their spread difference, assuming their spread series is cointegrated self.set_universe_selection(ManualUniverseSelectionModel ( [ Symbol.create(x, SecurityType.CFD, Market.OANDA) for x in ["XAUUSD", "XAGUSD"] ] )) # Custom alpha model to emit trade insights based on the gold-sliver price spread self.add_alpha(PairsTradingAlphaModel()) # Equal weighting trades assuming the spread is cointegrated by 1:1 ratio self.set_portfolio_construction(EqualWeightingPortfolioConstructionModel()) class PairsTradingAlphaModel(AlphaModel): def __init__(self) -> None: # Use 500-step mean and SD indicator on determine the spread relative difference for trading signal generation self.pair = [ ] self.spread_mean = SimpleMovingAverage(500) self.spread_std = StandardDeviation(500) # Assume efficient mean reversal happens within 2 hours self.period = timedelta(hours=2) def update(self, algorithm: QCAlgorithm, slice: Slice) -> List[Insight]: # Update the indicator with updated spread difference, such that the an updated cointegration threshold is calculated for trade inception spread = self.pair[1].price - self.pair[0].price self.spread_mean.update(algorithm.time, spread) self.spread_std.update(algorithm.time, spread) upperthreshold = self.spread_mean.current.value + self.spread_std.current.value lowerthreshold = self.spread_mean.current.value - self.spread_std.current.value # If the spread is higher than upper threshold, bet their spread series will revert to mean if spread > upperthreshold: return Insight.group( [ Insight.price(self.pair[0].symbol, self.period, InsightDirection.UP), Insight.price(self.pair[1].symbol, self.period, InsightDirection.DOWN) ]) elif spread < lowerthreshold: return Insight.group( [ Insight.price(self.pair[0].symbol, self.period, InsightDirection.DOWN), Insight.price(self.pair[1].symbol, self.period, InsightDirection.UP) ]) return [] def on_securities_changed(self, algorithm: QCAlgorithm, changes: SecurityChanges) -> None: self.pair = [x for x in changes.added_securities] #1. Call for 500 bars of history data for each symbol in the pair and save to the variable history history = algorithm.history([x.symbol for x in self.pair], 500) #2. Unstack the Pandas data frame to reduce it to the history close price history = history.close.unstack(level=0) #3. Iterate through the history tuple and update the mean and standard deviation with historical data for tuple in history.itertuples(): self.spread_mean.update(tuple[0], tuple[2]-tuple[1]) self.spread_std.update(tuple[0], tuple[2]-tuple[1])
public class GoldSilverPairsTradingAlgorithm : QCAlgorithm { public override void Initialize() { SetStartDate(2018, 7, 1); SetEndDate(2019, 3, 31); SetCash(100000); UniverseSettings.Resolution = Resolution.Hour; // Custom universe contains only gold and sliver spot CFDs for trading their spread difference, assuming their spread series is cointegrated SetUniverseSelection(new ManualUniverseSelectionModel ( new [] {"XAUUSD", "XAGUSD"} .Select(x => QuantConnect.Symbol.Create(x, SecurityType.Cfd, Market.Oanda)) )); // Custom alpha model to emit trade insights based on the gold-sliver price spread AddAlpha(new PairsTradingAlphaModel()); // Equal weighting trades assuming the spread is cointegrated by 1:1 ratio SetPortfolioConstruction(new EqualWeightingPortfolioConstructionModel()); } } public partial class PairsTradingAlphaModel : AlphaModel { // Use 500-step mean and SD indicator on determine the spread relative difference for trading signal generation private SimpleMovingAverage _spreadMean = new SimpleMovingAverage(500); private StandardDeviation _spreadStd = new StandardDeviation(500); // Assume efficient mean reversal happens within 2 hours private TimeSpan _period = TimeSpan.FromHours(2); private Security[] _pair = new Security[2]; public override IEnumerable<Insight> Update(QCAlgorithm algorithm, Slice slice) { // Update the indicator with updated spread difference, such that the an updated cointegration threshold is calculated for trade inception var spread = _pair[1].Price - _pair[0].Price; _spreadMean.Update(algorithm.Time, spread); _spreadStd.Update(algorithm.Time, spread); var upperthreshold = _spreadMean + _spreadStd; var lowerthreshold = _spreadMean - _spreadStd; // If the spread is higher than upper threshold, bet their spread series will revert to mean if (spread > upperthreshold) { return Insight.Group( Insight.Price(_pair[0].Symbol, _period, InsightDirection.Up), Insight.Price(_pair[1].Symbol, _period, InsightDirection.Down) ); } else if (spread < lowerthreshold) { return Insight.Group( Insight.Price(_pair[0].Symbol, _period, InsightDirection.Down), Insight.Price(_pair[1].Symbol, _period, InsightDirection.Up) ); } return Enumerable.Empty<Insight>(); } public override void OnSecuritiesChanged(QCAlgorithm algorithm, SecurityChanges changes) { _pair = changes.AddedSecurities.ToArray(); //1. Call for 500 days of history data for each symbol in the pair and save to the variable history var history = algorithm.History(_pair.Select(x => x.Symbol), 500); //2. Iterate through the history tuple and update the mean and standard deviation with historical data foreach (var slice in history) { var spread = slice[_pair[1].Symbol].Close - slice[_pair[0].Symbol].Close; _spreadMean.Update(slice.Time, spread); _spreadStd.Update(slice.Time, spread); } } }